Multiple Testing and Thresholding

NITP, 2009

Thanks for the slides Tom Nichols!
Overview

• Multiple Testing Problem
 – Which of my 100,000 voxels are “active”?

• Two methods for controlling false positives
 – Familywise Error Rate
 • Controlling the chance of any false positives
 • Bonferroni, Random Field and Nonparametric Methods
 – False Discovery Rate
 • Controlling the fraction of false positives
Overview

• Multiple Testing Problem
 – Which of my 100,000 voxels are “active”?

• Two methods for controlling false positives
 – Familywise Error Rate
 • Controlling the chance of any false positives
 • Bonferroni, Random Field and Nonparametric Methods
 – False Discovery Rate
 • Controlling the fraction of false positives
Hypothesis Testing Review

- Establish H_0: no activation in voxel i
- Establish significance level α
 - Derive threshold u_α
Hypothesis Testing Review

- Establish H_0: no activation in voxel i
- Establish significance level α
 - Derive threshold u_α
- Calculate test statistic t
- P-value
 - $P(T > t|H_0)$
- Decision: Reject or accept H_0
Hypothesis Testing in fMRI

• Mass Univariate Modeling
 – Fit a separate model for each voxel
 – Look at images of statistics

 – Apply Threshold…
Assessing Statistic Images

• What threshold will show us signal?

High Threshold
\[t > 5.5 \]
Good Specificity
Poor Power (risk of false negatives)

Med. Threshold
\[t > 3.5 \]

Low Threshold
\[t > 0.5 \]
Poor Specificity (risk of false positives)
Good Power
Voxel-level Inference

• Retain voxels above α-level threshold u_α
• Gives best spatial specificity
 – The null hyp. at a single voxel can be rejected

Statistic values
Voxel-level Inference

• Retain voxels above α-level threshold u_α
• Gives best spatial specificity
 – The null hyp. at a single voxel can be rejected
Voxel-level Inference

- Retain voxels above α-level threshold u_α
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected
Cluster-level Inference

• Two step-process
 – Define clusters by arbitrary threshold u_{clus}
Cluster-level Inference

• Two step-process
 – Define clusters by arbitrary threshold u_{clus}
 – Retain clusters larger than α-level threshold k_α
Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that *one or more* of voxels in cluster active

\[u_{\text{clus}} \]

Cluster not significant

\[k_{\alpha} \]

Cluster significant
Voxel-wise Inference & Multiple Testing Problem (MTP)

• Standard Hypothesis Test
 – Controls Type I error of each test, at say 5%
 – But what if I have 100,000 voxels?
 • 5,000 false positives on average!

• Must control false positive rate
 – What false positive rate?
 – Chance of 1 or more Type I errors?
 – Proportion of Type I errors?
Overview

• Multiple Testing Problem
 – Which of my 100,000 voxels are “active”?

• Two methods for controlling false positives
 – Familywise Error Rate
 • Controlling the chance of any false positives
 • Bonferroni, Random Field and Nonparametric Methods
 – False Discovery Rate
 • Controlling the fraction of false positives
FWER MTP Solutions

- Bonferroni
- Maximum Distribution Methods
 - Random Field Theory
 - Permutation
Bonferroni

- Based on the Bonferroni inequality
 - For uncorrelated events E_i
 - $P(E_1 \text{ or } E_2 \text{ or } \ldots E_n) \leq \sum_{i=1}^{n} P(E_i)$
- If $P(Y_i \text{ passes}|H_0) \leq \alpha/n$ then
 - $P(\text{some } Y_i \text{ passes}|H_0) \leq \sum P(Y_i \text{ passes}|H_0) \leq \alpha$
- For 100,000 voxels
 - $\alpha = 0.05/100,000 = 0.0000005$
Bonferroni

- Can be too conservative
- Bonferroni assumes all tests are independent
- fMRI data tend to be spatially correlated
 - # of independent tests < # voxels
Bonferroni

• Where does spatial correlation come from?
 – How images are constructed from the scanner
 – Physiologic signal
 – Preprocessing steps (realignment, smoothing, etc.)
Why not use a spatial model

- If we can model temporal correlation, why not spatial?
- Need an explicit spatial model
- No routine spatial modeling methods exist
 - High-dimensional mixture modeling problem
 - Activations don’t look like Gaussian blobs
 - Need realistic shapes, sparse representation
 - Some work by Hartvig et al., Penny et al.
FWER MTP Solutions: Controlling FWER w/ Max

- FWER & distribution of maximum
 \[\text{FWER} = P(\text{FWE}) = P(\text{One or more voxels } \geq u \mid H_0) = P(\text{Max voxel } \geq u \mid H_0) \]

- \(100(1-\alpha)\)%ile of max dist\(^n\) controls FWER
 \[\text{FWER} = P(\text{Max voxel } \geq u_\alpha \mid H_0) \leq \alpha \]
FWER MTP Solutions: Random Field Theory

- Euler Characteristic χ_u
 - Topological Measure
 - #blobs - #holes
 - At high thresholds, just counts blobs
 - FWER $= P(\text{Max voxel} \geq u \mid H_o)$
 $= P(\text{One or more blobs} \mid H_o)$
 $\approx P(\chi_u \geq 1 \mid H_o)$
 $\approx E(\chi_u \mid H_o)$

No holes
Never more than 1 blob

Suprathreshold Sets
RFT Details: Expected Euler Characteristic

- \(E(\chi_u) \approx V \sqrt{|\Lambda|} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2 \)
 - \(V \rightarrow \) volume
 - \(\sqrt{|\Lambda|} \rightarrow \) roughness, measuring the covariance of the gradient of GRF, \(G \)

\[
\Lambda = \text{Var} \left(\frac{\delta G}{\delta (x, y, z)} \right) = \begin{pmatrix}
\text{Var} \left(\frac{\delta G}{\delta x} \right) & \text{Cov} \left(\frac{\delta G}{\delta x}, \frac{\delta G}{\delta y} \right) & \text{Cov} \left(\frac{\delta G}{\delta x}, \frac{\delta G}{\delta z} \right) \\
\text{Cov} \left(\frac{\delta G}{\delta y}, \frac{\delta G}{\delta x} \right) & \text{Var} \left(\frac{\delta G}{\delta y} \right) & \text{Cov} \left(\frac{\delta G}{\delta y}, \frac{\delta G}{\delta z} \right) \\
\text{Cov} \left(\frac{\delta G}{\delta z}, \frac{\delta G}{\delta x} \right) & \text{Cov} \left(\frac{\delta G}{\delta z}, \frac{\delta G}{\delta y} \right) & \text{Var} \left(\frac{\delta G}{\delta z} \right)
\end{pmatrix}
\]
Random Field Theory
Smoothness Parameterization

- Smoothness parameterized as Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

- Parameterize $\sqrt{|\Lambda|}$ in terms of FWHM

$$\sqrt{|\Lambda|} = \frac{(4\log2)^{1/2}}{FWHM_x \ FWHM_y \ FWHM_z}$$
Random Field Theory
Smoothness Parameterization

- RESELS – Resolution Elements
 - 1 RESEL = FWHM$_x \times$ FWHM$_y \times$ FWHM$_z$
 - RESEL Count R
 - $R = \sqrt{\sqrt{|\Lambda|}} \leftarrow \text{The only data-dependent part of } E(\chi_u)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 voxel FWHM smoothness, 4 RESELS

- RESELS not # of independent ‘things’ in the image
Random Field Intuition

• Corrected P-value for voxel value t

$$P^c = P(\max T > t) \approx E(\chi_t) \approx V \sqrt{\Lambda} t^2 \exp(-t^2/2)$$

• Statistic value t increases
 – P^c decreases (of course!)

• Search volume V increases
 – P^c increases (*more* severe MCP)

• Smoothness increases ($\sqrt{\Lambda}$ smaller)
 – P^c decreases (*less* severe MCP)
Nonparametric Permutation Test

- **Parametric methods**
 - Assume distribution of statistic under null hypothesis

- **Nonparametric methods**
 - Use *data* to find distribution of statistic under null hypothesis
 - Any statistic!
Permutation Test
Toy Example

• Data from voxel in visual stim. experiment
 A: Active, flashing checkerboard B: Baseline, fixation
 6 blocks, ABABAB Just consider block averages...

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>103.00</td>
<td>90.48</td>
<td>99.93</td>
<td>87.83</td>
<td>99.76</td>
<td>96.06</td>
</tr>
</tbody>
</table>

• Null hypothesis H_0
 – No experimental effect, A & B labels arbitrary

• Statistic
 – Mean difference
Permutation Test
Toy Example

• Under H_o
 – Consider all equivalent relabelings

<table>
<thead>
<tr>
<th>AAABBB</th>
<th>ABABAB</th>
<th>BAAABB</th>
<th>BABBA</th>
<th>BABBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABABB</td>
<td>ABABBA</td>
<td>BAABAB</td>
<td>BBAAB</td>
<td>BBAAAB</td>
</tr>
<tr>
<td>ABBBAB</td>
<td>ABBAAB</td>
<td>BAABBA</td>
<td>BBAABA</td>
<td>BBABA</td>
</tr>
<tr>
<td>AABBBA</td>
<td>ABBABA</td>
<td>BABABA</td>
<td>BBABAA</td>
<td>BBBAAA</td>
</tr>
<tr>
<td>ABBABB</td>
<td>ABBAAB</td>
<td>BABABA</td>
<td>BBABAA</td>
<td>BBBAAA</td>
</tr>
</tbody>
</table>
Permutation Test
Toy Example

• Under H_o
 – Consider all equivalent relabelings
 – Compute all possible statistic values

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAABBB</td>
<td>4.82</td>
<td>ABABAB</td>
<td>9.45</td>
<td>BAAABB</td>
</tr>
<tr>
<td>AABABB</td>
<td>-3.25</td>
<td>ABABBA</td>
<td>6.97</td>
<td>BAABAB</td>
</tr>
<tr>
<td>AABBBAB</td>
<td>-0.67</td>
<td>ABBAAB</td>
<td>1.38</td>
<td>BAABBA</td>
</tr>
<tr>
<td>AABBBBA</td>
<td>-3.15</td>
<td>ABBABA</td>
<td>-1.10</td>
<td>BABAAB</td>
</tr>
<tr>
<td>ABAABB</td>
<td>6.86</td>
<td>BBBAAA</td>
<td>1.48</td>
<td>BABABA</td>
</tr>
<tr>
<td>BABBBAA</td>
<td>-6.86</td>
<td>BAAABA</td>
<td>3.15</td>
<td>BBAABA</td>
</tr>
<tr>
<td>BABBBAB</td>
<td>3.25</td>
<td>BBBAAAB</td>
<td>4.82</td>
<td>BBABAA</td>
</tr>
</tbody>
</table>
Permutation Test
Toy Example

• Under H_o
 – Consider all equivalent relabelings
 – Compute all possible statistic values
 – Find 95%ile of permutation distribution

<table>
<thead>
<tr>
<th>AABBBB</th>
<th>4.82</th>
<th>ABABAB</th>
<th>9.45</th>
<th>BAAABB</th>
<th>-1.48</th>
<th>BABBA</th>
<th>-6.86</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABABB</td>
<td>-3.25</td>
<td>ABABBA</td>
<td>6.97</td>
<td>BAABAB</td>
<td>1.10</td>
<td>BBAABA</td>
<td>3.15</td>
</tr>
<tr>
<td>ABBBAB</td>
<td>-0.67</td>
<td>ABBAAB</td>
<td>1.38</td>
<td>BAABBA</td>
<td>-1.38</td>
<td>BBAABA</td>
<td>0.67</td>
</tr>
<tr>
<td>AABBBA</td>
<td>-3.15</td>
<td>ABBA</td>
<td>-1.10</td>
<td>BABABA</td>
<td>-6.97</td>
<td>BBABAA</td>
<td>3.25</td>
</tr>
<tr>
<td>ABAABB</td>
<td>6.86</td>
<td>ABBBA</td>
<td>1.48</td>
<td>BABABA</td>
<td>-9.45</td>
<td>BBBAAA</td>
<td>-4.82</td>
</tr>
</tbody>
</table>
Permutation Test
Toy Example

• Under H_0
 – Consider all equivalent relabelings
 – Compute all possible statistic values
 – Find 95%ile of permutation distribution

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAABBB</td>
<td>4.82</td>
</tr>
<tr>
<td>AABABB</td>
<td>-3.25</td>
</tr>
<tr>
<td>AABBBAB</td>
<td>-0.67</td>
</tr>
<tr>
<td>AABBBBA</td>
<td>-3.15</td>
</tr>
<tr>
<td>ABAABB</td>
<td>6.86</td>
</tr>
<tr>
<td>ABABABA</td>
<td>9.45</td>
</tr>
<tr>
<td>BABABB</td>
<td>-1.48</td>
</tr>
<tr>
<td>BBAAAB</td>
<td>3.15</td>
</tr>
<tr>
<td>BAABBA</td>
<td>1.10</td>
</tr>
<tr>
<td>ABBAAB</td>
<td>1.38</td>
</tr>
<tr>
<td>BBABBA</td>
<td>-1.38</td>
</tr>
<tr>
<td>AABABB</td>
<td>1.48</td>
</tr>
<tr>
<td>BABBAA</td>
<td>1.48</td>
</tr>
</tbody>
</table>
Permutation Test

Toy Example

• Under H_0
 – Consider all equivalent relabelings
 – Compute all possible statistic values
 – Find 95\%ile of permutation distribution
Small Sample Sizes

• Permutation test doesn’t work well with small sample sizes
 – Possible p-values for previous example:
 • 0.05, 0.1, 0.15, 0.2, etc
 – Tends to be conservative for small sample sizes
Controlling FWER: Permutation Test

• Parametric methods
 – Assume distribution of max statistic under null hypothesis

• Nonparametric methods
 – Use data to find distribution of max statistic under null hypothesis
 – Again, any max statistic!
Permutation Test & Exchangeability

• Exchangeability is fundamental
 – Def: Distribution of the data unperturbed by permutation
 – Under H₀, exchangeability justifies permuting data
 – Allows us to build permutation distribution

• Subjects are exchangeable
 – Under Ho, each subject’s A/B labels can be flipped

• fMRI scans are not exchangeable under Ho
 – If no signal, can we permute over time?
 – No, permuting disrupts order, temporal autocorrelation
Permutation Test & Exchangeability

• fMRI scans are not exchangeable
 – Permuting disrupts order, temporal autocorrelation

• Intra-subject fMRI permutation test
 – Must decorrelate data, model before permuting
 – What is correlation structure?
 • Usually must use parametric model of correlation
 – E.g. Use wavelets to decorrelate
 • Bullmore et al 2001, HBM 12:61-78

• Inter-subject fMRI permutation test
 – Create difference image for each subject
 – For each permutation, flip sign of some subjects
Permutation Test
Other Statistics

• Collect max distribution
 – To find threshold that controls FWER

• Consider smoothed variance t statistic
 – To regularize low-df variance estimate
Permutation Test
Smoothed Variance t

- Collect max distribution
 - To find threshold that controls FWER
- Consider smoothed variance t statistic
Permutation Test
Smoothed Variance t

- Collect max distribution
 - To find threshold that controls FWER
- Consider smoothed variance t statistic
Permutation Test Example

- fMRI Study of Working Memory
 - 12 subjects, block design Marshuetz et al (2000)
 - Item Recognition
 - Active: View five letters, 2s pause, view probe letter, respond
 - Baseline: View XXXXX, 2s pause, view Y or N, respond

- Second Level RFX
 - Difference image, A-B constructed for each subject
 - One sample, smoothed variance t test
Permutation Test
Example

• Permute!
 – \(2^{12} = 4,096\) ways to flip 12 A/B labels
 – For each, note maximum of \(t\) image
Permutation Test

Example

• Compare with Bonferroni
 – \(\alpha = \frac{0.05}{110,776} \)

• Compare with parametric RFT
 – 110,776 2×2×2mm voxels
 – 5.1×5.8×6.9mm FWHM smoothness
 – 462.9 RESELs
\[t_{11} \text{ Statistic, Nonparametric Threshold} \]

- \(u_{\text{Perm}} = 7.67 \)
- 58 sig. vox.

\[t_{11} \text{ Statistic, RF & Bonf. Threshold} \]

- \(u_{\text{RF}} = 9.87 \)
- \(u_{\text{Bonf}} = 9.80 \)
- 5 sig. vox.

- RFT threshold is conservative (not smooth enough, d.f. too small)
- Permutation test is more efficient than Bonferroni since it accounts for smoothness
- Smooth variance is more efficient for small d.f.

\[\text{Smoothed Variance } t \text{ Statistic, Nonparametric Threshold} \]

- 378 sig. vox.
Does this Generalize?

RFT vs Bonf. vs Perm.

<table>
<thead>
<tr>
<th>Category</th>
<th>df</th>
<th>RF</th>
<th>Bonf</th>
<th>Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Fluency</td>
<td>4</td>
<td>4701.32</td>
<td>42.59</td>
<td>10.14</td>
</tr>
<tr>
<td>Location Switching</td>
<td>9</td>
<td>11.17</td>
<td>9.07</td>
<td>5.83</td>
</tr>
<tr>
<td>Task Switching</td>
<td>9</td>
<td>10.79</td>
<td>10.35</td>
<td>5.10</td>
</tr>
<tr>
<td>Faces: Main Effect</td>
<td>11</td>
<td>10.43</td>
<td>9.07</td>
<td>7.92</td>
</tr>
<tr>
<td>Faces: Interaction</td>
<td>11</td>
<td>10.70</td>
<td>9.07</td>
<td>8.26</td>
</tr>
<tr>
<td>Item Recognition</td>
<td>11</td>
<td>9.87</td>
<td>9.80</td>
<td>7.67</td>
</tr>
<tr>
<td>Visual Motion</td>
<td>11</td>
<td>11.07</td>
<td>8.92</td>
<td>8.40</td>
</tr>
<tr>
<td>Emotional Pictures</td>
<td>12</td>
<td>8.48</td>
<td>8.41</td>
<td>7.15</td>
</tr>
<tr>
<td>Pain: Warning</td>
<td>22</td>
<td>5.93</td>
<td>6.05</td>
<td>4.99</td>
</tr>
<tr>
<td>Pain: Anticipation</td>
<td>22</td>
<td>5.87</td>
<td>6.05</td>
<td>5.05</td>
</tr>
</tbody>
</table>
Does this Generalize?
RFT vs Bonf. vs Perm.

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>RF</th>
<th>Bonf</th>
<th>Perm</th>
<th>SmVar t Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Fluency</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Location Switching</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>158</td>
<td>354</td>
</tr>
<tr>
<td>Task Switching</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>2241</td>
<td>3447</td>
</tr>
<tr>
<td>Faces: Main Effect</td>
<td>11</td>
<td>127</td>
<td>371</td>
<td>917</td>
<td>4088</td>
</tr>
<tr>
<td>Faces: Interaction</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Item Recognition</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td>58</td>
<td>378</td>
</tr>
<tr>
<td>Visual Motion</td>
<td>11</td>
<td>626</td>
<td>1260</td>
<td>1480</td>
<td>4064</td>
</tr>
<tr>
<td>Emotional Pictures</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Pain: Warning</td>
<td>22</td>
<td>127</td>
<td>116</td>
<td>221</td>
<td>347</td>
</tr>
<tr>
<td>Pain: Anticipation</td>
<td>22</td>
<td>74</td>
<td>55</td>
<td>182</td>
<td>402</td>
</tr>
</tbody>
</table>
Overview

• Multiple Testing Problem
 – Which of my 100,000 voxels are “active”?

• Two methods for controlling false positives
 – Familywise Error Rate
 • Controlling the chance of any false positives
 • Bonferroni, Random Field and Nonparametric Methods
 – False Discovery Rate
 • Controlling the fraction of false positives
False Discovery Rate

- For any threshold, all voxels can be cross-classified:
 - **Null True (no effect)**
 - Accept Null ("Negative")
 - V_{0N}
 - Reject Null ("Positive")
 - V_{0P}
 - **Null False (true effect)**
 - V_{1N}
 - V_{1P}

 - **False Discovery Proportion**
 - $FDP = \frac{V_{0P}}{V_{P}}$ (FDP=0 if $V_{P}=0$)

- But only can observe V_{P}, don’t know V_{0P}
 - We control the expected FDP
 - $FDR = E(FDP)$
False Discovery Rate
Illustration:

Noise

Signal

Signal+Noise
Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

FWE

Control of False Discovery Rate at 10%

Percentage of Activated Pixels that are False Positives
Benjamini & Hochberg Procedure

- Select desired limit α on FDR
- Order p-values, $p(1) \leq p(2) \leq \ldots \leq p(v)$
- Let r be largest i such that
 \[p(i) \leq \frac{i}{V} \times \alpha \]
- Reject all hypotheses corresponding to $p(1), \ldots, p(r)$.

![Diagram showing the Benjamini-Hochberg procedure with a dotted line representing the inequality $p(i) \leq i/V \times \alpha$.]
Adaptiveness of Benjamini & Hochberg FDR

When no signal: P-value threshold α/v

When all signal: P-value threshold α

...FDR adapts to the amount of signal in the data
Benjamini & Hochberg: Key Properties

• FDR is controlled
 \[\mathbb{E}(\text{FDP}) \leq \alpha \frac{m_0}{v} \]
 – Conservative, if large fraction of nulls false

• Adaptive
 – Threshold depends on amount of signal
 • More signal, More small p-values,
 More \(p(i) \) less than \(\frac{i}{v} \times \frac{\alpha}{c(v)} \)
FDR Example

FWER Perm. Thresh. = 7.67
58 voxels

FDR Threshold = 3.83
3,073 voxels
Conclusions for voxelwise tests

• Multiple Testing Problem
 – Choose a MTP metric (FDR, FWE)
 – Use a powerful method that controls the metric

• Nonparametric Inference
 – More power for small group FWE inferences

• References
 – Permutation: Nichols & Holmes, HBM, 2001: 1-20
Cluster-based inference

• We use RFT all the time, so it can’t be as bad as the RFT results we just saw
• Use cluster size as the test statistic for RFT
• Permutation tests use cluster size or cluster mass
Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold u_{clus}
Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that one or more of voxels in cluster active
Extent vs Mass

- Cluster extent
 - How many voxels are in cluster
 - Sensitive to spatially extended signals

- Cluster mass
 - Combines signal extent and intensity
 - Can be done with FSL’s randomise and SnPM
 - Generally works better, but RFT-based distribution is difficult
RF vs Perm: cluster mass

Most popular threshold

Hayasaka, et al, NI 2003
Conclusions

• Cluster extent RF test
 – Generally conservative (especially for low smoothness)
 – Only close to 0.05 for high threshold (0.0001) and smooth data
 – In some cases extremely anticonservative
 – Results seem to worsen with larger sample sizes (not sure why)
Conclusions

• Cluster extent permutation test
 – In general works well for smooth data with sufficient DF
 – Generally conservative due to discreteness of the test
What to do?

• Start with fast RFT-based approaches
• If you think you have something use longer permutation-based thresholding
• Also check out new threshold free cluster enhancement (TFCE) option in FSL
 – No need to choose 2 thresholds!